专利摘要:
走査方向に沿って媒体上を走査する間にイメージングヘッドにより放出される放射ビームを使って、媒体上に特徴物のパターンの画像を形成するための方法が提供される。この方法は、特徴物のパターンの第一の方向に沿ったピッチを決定するステップと、イメージングヘッドを制御して、画像化された画素と画像化されない画素を含んでいてもよい複数の画素で、媒体上に特徴物のパターンを形成するように放射ビームを選択的に放出させるステップを含む。これらの複数の画素は、走査方向に沿った第一の大きさを有する第一の画素と、走査方向に沿った第二の大きさを有する第二の画素を含んでいてもよい。第二の大きさは第一の大きさと異なっていてもよく、少なくとも、特徴物の第一の方向に沿ったピッチと第一の大きさに基づいて決定される。
公开号:JP2011516900A
申请号:JP2010544792
申请日:2008-01-30
公开日:2011-05-26
发明作者:グレッグ ペレグリム
申请人:コダック グラフィック コミュニケーションズ カナダ カンパニー;
IPC主号:G02B5-20
专利说明:

[0001] 本発明は、イメージングシステムと画像を形成するための方法に関する。本発明は、たとえば電子ディスプレイ用カラーフィルタの製作に応用してもよい。]
背景技術

[0002] 表示パネルに用いられるカラーフィルタは一般に、複数の色特徴物(color features)からなるパターンを有する。色特徴物としては、たとえば赤、緑および/または青の色特徴物のパターンがある。カラーフィルタは、他の色の色特徴物でも製作できる。色特徴物の配置は、各種の好適な配列のうちのいずれでもよい。先行技術によるストライプ配列の場合、図1Aに示されるように、赤、緑、青の色特徴物の列が交互に配列される。] 図1A
[0003] 図1Aは、先行技術による「ストライプ配列」のカラーフィルタ10の一部を示しており、赤(R)、緑(G)、青(B)の複数の色特徴物、それぞれ12、14、16が、受容体要素18全体にわたり交互に配置される列として形成されている。色特徴物12、14、16は、カラーフィルタマトリクス20(マトリクス20ということもある)の一部で縁取られる。列は長いストライプとして画像化でき、これらのストライプはマトリクスセル34(セル34ということもある)によって個別の色特徴物12、14、16に細分される。] 図1A
[0004] 当業界ではさまざまな画像形成方法が知られており、これらを利用して媒体上に多様な特徴物を形成することができる。たとえば、レーザ誘起熱転写工程は、表示体および、特にカラーフィルタを製作するために提案されている。レーザ誘起熱転写工程を用いてカラーフィルタを製作する場合、受容体要素とも呼ばれるカラーフィルタ基板に供与体要素が積み重ねられ、この供与体要素が画像に沿って露光されて、着色剤が供与体要素から受容体要素へと選択的に転写される。好ましい露光方法は、レーザビーム等の放射ビームを使って、受容体要素への着色剤の転写を誘起するものである。ダイオードレーザは、低コスト、小型であるため、特に好まれる。]
[0005] レーザ誘起「熱転写」工程には、レーザ誘起「染料転写」工程、レーザ誘起「溶融型転写」工程、レーザ誘起「アブレーション転写」工程、レーザ誘起「質量転写」工程等がある。レーザ誘起熱転写工程中に転写される着色剤としては、好適な染料ベースまたは顔料ベースの組成物がある。その他の要素、たとえば1種または複数のバインダが転写されるようにしてもよい。]
[0006] 従来のレーザイメージングシステムの中には、発生される放射ビームの数が限定されているものがある。別の従来のシステムでは、個々にモジュール化された多数のイメージングチャネルを用いて多くの放射ビームを発生することにより、画像を完成させるのに必要な時間を短縮している。このような「チャネル」を多数有するイメージングヘッドを入手することが可能である。たとえば、カナダ、ブリティッシュコロンビア州のコダック・グラフィック・コミュニケーション・カナダ・カンパニー(Kodak Graphic Communication Canada Company)が製造するSQUAREspot(登録商標)モデルの熱転写式イメージングヘッドは、数百個の独立したチャネルを備える。各チャネルの出力が25mWを超えることも可能である。イメージングチャネルのアレイを制御して、一連の画像帯(image swath)が連続する画像を形成するように配列される形で画像を書き込むようにすることができる。]
[0007] 図1Aに示されるストライプ配列は、カラーフィルタの特徴物の配列の一例である。カラーフィルタは、他の配列を有していてもよい。モザイク配列では、色特徴物が両方向(たとえば、列と行に沿った方向)に交互に配置され、各色特徴物が「島状」となる。デルタ配列(図示せず)の場合、赤、緑、青の色特徴物の集合が相互に三角形の関係になるように配置される。モザイク配列とデルタ配列は、「島状」配列の例である。図1Bは、モザイク配列に配置された先行技術のカラーフィルタ10の一部を示しており、色特徴物12、14、16は列状に配列され、列を横切る方向と列に沿った方向の両方向に交互に配列される。] 図1A 図1B
[0008] また別のカラーフィルタ配列も当業界で公知である。上記のような図の例は長方形のカラーフィルタ要素のパターンを示しているが、他の形状の特徴物を含む他のパターンも知られている。]
[0009] 図1Cは、三角形の特徴物12A、14A、16Aの配列を有する先行技術によるカラーフィルタ10の一部を示す。図1Cに示されるように、個々の色特徴物はそれぞれ、列に沿って配置され、マトリクス20と整合している。] 図1C
[0010] 図1Dは、三角形の色特徴物12A、14A、16Aの配列を有する先行技術によるカラーフィルタ10の一部を示す。図1Dに示されるように、個々の色特徴物の各々は、カラーフィルタ10の列と行に沿って交互に配置される。図1Cと1Dに示されるように、色特徴物12A、14A、16Aの方位は、ある1つの行または列の中で異なるようにすることができる。] 図1C 図1D
[0011] 図1Eは、杉あや形状の色特徴物12B、14B、16Bの配列を有する先行技術によるカラーフィルタ10の一部を示す。図1Eに示されるように、個々の色特徴物の各々は列に沿って配置され、マトリクス20と整合している。色特徴物12B、14B、16Bは、左右に折り曲げられたストライプで形成され、カラーフィルタマトリクス20の一部によって縁取られる。] 図1E
[0012] 図1Fは、杉あや形状の色特徴物12B、14B、16Bの配列を有する先行技術によるカラーフィルタ10の一部を示す。図1Fに示されるように、個々の色特徴物の各々は、カラーフィルタ10の列と行に沿って交互に配置される。] 図1F
[0013] カラーフィルタの特徴物の形状と配列は、よりよい色混合やよりよい視野角といった所望のカラーフィルタ属性が得られるように選択することができる。]
[0014] ある利用分野においては、媒体上に設置された位置合わせ領域(registration region)と略整合するように特徴物を形成することが求められる。たとえば、図1Aにおいて、各種の色特徴物12、14、16は、マトリクス20によって提供されるマトリクスセル34のパターンと整合させられることになる。色特徴物12、14、16は、バックライトの光漏れの影響を小さくするために、マトリクス20と重複させることができる。カラーフィルタ等の一部の用途では、最終製品の視覚的品質は、特徴物のパターン(たとえば、カラーフィルタの特徴物のパターン)が位置合わせ小領域(registration sub-region)(たとえば、カラーフィルタマトリクス)のパターンと整合する精度に依存することがある。位置ずれによって、不要な無色の空隙が形成されたり、隣接する特徴物が重複したりすることがあり、これらは不要な視覚的アーチファクトを発生させる原因となる。マトリクス20と重複させることによって、カラーフィルタを製作する場合の色特徴物とマトリクス20との整合の精度に対する要求は緩和されるものの、一般に、マトリクス20とどれだけ重複させることができるかには限界がある。重複(と最終的な合致)の程度を制約しうる要因としては、これらに限定されないが、カラーフィルタの具体的な配列、マトリクスの線の幅、マトリクスの線の粗さ、バックライトの光漏れを防止するための必要最小限の重複量、焼結後の収縮等がある。] 図1A
[0015] 画像形成工程そのものが、重複可能な量に影響を与える可能性がある。たとえば、レーザ誘起熱転写工程で生成される画像の視覚的品質は一般に、供与体要素と受容体要素の間の界面の均一性によって影響を受けやすい。界面が不均一であると、供与体要素から受容体要素に転写される画像形成材料の量に影響が及ぶことがある。マトリクスの線の上で隣接する特徴物が重なり合っている場合、供与体要素と受容体要素との間隔はその重複領域においてさらに大きくなるが、これは重複領域により多くの材料が転写されたことによる。このように間隔が大きくなると、別の供与体要素を用いたその後の画像形成中に形成される特徴物の視覚的品質に不利な影響が及ぶことがある。この点で、一般に、隣接する特徴物同士がマトリクス部分の上で重なり合わないことが好ましい。この要求により、繰り返される色特徴物のパターンとマトリクスセルの繰返しパターンとの間に求められる整合性に関する制約がさらに厳しくなる。]
[0016] レーザ画像形成工程を採用する場合、一般に、レーザイメージャが媒体全体を放射ビームで走査できる画像形成分解能は、最終的に実現可能な整合の程度と関係がある。画像形成工程にかかわる分解能は、イメージングチャネルにより放出される当該の放射ビームによって形成される画素の大きさ特性に関係する。放射ビームによって形成される画像画素が独自の大きさを有し、画像化される特徴物が各種の配列の画素によって形成されるとすると、画像化される特徴物の大きさまたは配置は、画素の大きさによって、その特徴物の所望の大きさまたは配置とは違ってしまうかもしれない。特徴物の大きさをより精密に制御するためには、高分解能(つまり、小さい画素)が一般に好まれるが、使用する媒体の露光に関する要求から、画像形成工程は比較的低い分解能(つまり、比較的「大きな」画素)を使用するように制限される可能性もある。]
先行技術

[0017] 米国特許公開第2002/0159008明細書
米国特許第6682862号明細書
米国特許公開第2006/0102853明細書]
発明が解決しようとする課題

[0018] 依然として、特徴物の画像を高品質に形成できるような、有効で実用的な画像形成方法とそのシステムが求められている。画像は、媒体上に設けられる位置合わせ小領域のパターンと略整合するように形成する必要のある特徴物のパターンを含んでいてもよい。]
[0019] 依然として、特徴物のパターンを、その特徴物(たとえば、カラーフィルタの特徴物)のピッチが位置合わせ小領域(たとえば、カラーフィルタマトリクスのセル)のパターンの中の小領域のピッチとマッチするように形成できる、有効で実用的な画像形成方法とそのシステムが求められている。]
[0020] 依然として、ある特徴物またはその一部が、その特徴物と別の特徴物との間の所望のピッチに関する要求を満たしながら、特定の大きさで形成されるようにすることのできる、有効で実用的な画像形成方法とそのシステムが求められている。]
課題を解決するための手段

[0021] 本発明は、ある媒体の上に、その媒体を放射ビームに関して移動させている間に特徴物のパターンの画像を形成する方法に関する。媒体は、位置合わせ小領域のパターン、たとえばマトリクス等を含んでいてもよい。画像は、特徴物、たとえばカラーフィルタや、有機発光ダイオード表示体の一部であるカラー光源のための色特徴物の1つまたは複数のパターン等を含んでいてもよい。特徴物の1つまたは複数のパターンは、位置合わせ小領域のパターンと整合させることができる。特徴物は、第一の色の第一の複数の特徴物の中の各特徴物が、第一の色の各特徴物から別の色の特徴物によって分離されるような島状の特徴物であってもよい。特徴物はストライプとすることができ、このストライプは1つまたは複数の方向に中断されていてもよい。特徴物の縁辺は、イメージングヘッドのイメージングチャネルの配列方向に関して歪曲したものであってもよい。]
[0022] 画像は、レーザ誘起染料転写工程、レーザ誘起質量転写工程等のレーザ誘起熱転写工程または、供与体要素から受容体要素に材料を転写するためのその他の手段によって形成することができる。]
[0023] この方法には、ある媒体上に、イメージングヘッドが走査方向に沿ってその媒体を走査する間にヘッドから放出される放射ビームで特徴物のパターンの画像を形成するステップを含めることができる。画像は、第一の方向に沿って規則的に配列された特徴物のパターンを含んでいてもよい。この方法には、たとえば、第一の方向に沿った特徴物のピッチを決定するステップと、イメージングヘッドを制御して、放射ビームを選択的に放出させ、画像化される画素(imaged pixel)と画像化されない画素(non-imaged pixel)を含む複数の画素で、媒体上に特徴物のパターンの画像を形成するステップを含めることができる。画素は、特徴物のパターンのピッチに適応できるように、異なる大きさとすることができる。たとえば、上記の複数の画素には、走査方向に沿って第一の大きさを有する第一の画素と、走査方向に沿って第二の大きさを有する第二の画素が含まれてもよい。第二の大きさは第一の大きさと異なり、少なくとも、第一の方向に沿った特徴物のピッチと第一の大きさに基づいて決定される。]
[0024] 特徴物のパターンは、第一の方向に沿って繰り返す特徴物を含んでいてもよい。一実施形態において、第一の方向に沿った特徴物のピッチは、第一の大きさまたは第二の大きさのいずれの整数倍とも等しくない。別の実施形態において、第一の大きさは、少なくとも、ある特徴物もしくはある特徴物の一部の第一の方向に沿った大きさ、または特徴物のパターンの中の隣接する特徴物同士の間の第一の方向に沿った間隔に基づいて決定される。第二の大きさは、少なくとも、特徴物のパターンの中の1つの特徴物の第一の方向に沿った大きさに基づいて決定することができる。]
[0025] 第一の画素と第二の画素の各々は画像化される画素とすることができ、特徴物のパターンの中の1つの特徴物の少なくとも一部は、第一の画素と第二の画素で形成することができる。特徴物のパターンの中の1つの特徴物は、少なくとも1つの画像化される画素で形成でき、その特徴物のパターンの中のその特徴物と隣接する特徴物との間隔は、少なくとも1つの画像化されない画素で形成できる。画像化される画素のいくつかの、走査方向に沿った大きさは、第一の大きさと第二の大きさのうちの一方と等しくすることができ、画像化されない画素のいくつかの、走査方向に沿った大きさは、第一の大きさと第二の大きさのうちのもう一方と等しくすることができる。特徴物のパターンの中の1つの特徴物の第一の部分は、それぞれ走査方向に沿って第一の大きさと等しい大きさの1つまたは複数の画素で形成でき、その特徴物の第二の部分は、走査方向に沿って第二の大きさと等しい大きさの1つまたは複数の画素で形成できる。その特徴物の第一の部分は、少なくとも第一の方向において、その特徴物の第二の部分と異なる大きさとすることができる。その特徴物の第一の方向に沿ったピッチは、その特徴物の第一の部分の第一の方向に沿った大きさまたはその特徴物の第二の部分の第一の方向に沿った大きさのいずれかの整数倍と等しくても、等しくなくてもよい。]
[0026] 特徴物のパターンの中の特徴物は、第一の方向と交差する第二の方向に沿って規則的に配列することができる。第二の方向に沿った特徴物のピッチを決定することができ、イメージングヘッドを制御して、第一の画素と第二の画素の各々を、走査方向と交差する方向に沿って第三の大きさとなるように形成することができる。第三の大きさは、少なくとも、第二の方向に沿った特徴物のピッチに基づいて決定できる。第三の大きさは、第二の方向に沿ったその特徴物のピッチが第三の大きさの整数倍と等しくなるように決定することができる。画素の大きさは、イメージングヘッドを回転させてイメージングヘッドの分解能を変化させるか、あるいはライトバルブチャネルの1つまたは複数のオンとオフの時間の長さを変えることによって調節できる。]
[0027] プログラム製品は、コントローラによって実行されたときに、コントローラがイメージングヘッドを制御して放射ビームを選択的に放出させ、前述のように画素を形成するようにする命令を含むコンピュータ読取可能信号群が記録されるように設計することができる。]
[0028] 本発明の実施形態と応用例を、添付の非限定的な図面により説明する。添付の図面は、本発明の概念を説明するためのものであり、正確な縮尺ではないかもしれない。]
図面の簡単な説明

[0029] 先行技術によるカラーフィルタの一部の平面図である。
先行技術による別のカラーフィルタの一部の平面図である。
三角形の特徴物を有する先行技術によるフィルタの一部の平面図である。
三角形の特徴物を有する先行技術による別のフィルタの一部の平面図である。
杉あや形状の特徴物を有する先行技術によるフィルタの一部の平面図である。
杉あや形状の特徴物を有する先行技術による別のフィルタの一部の平面図である。
カラーフィルタの特徴物のパターンとマトリクスセルのパターンとの望ましい合致状態を示す図である。
走査直交分解能が正しくない、図2Aのカラーフィルタ10の製作に使用されているレーザ誘起熱転写工程の概略図である。
先行技術によるマルチチャネルイメージングヘッドの一例の光学系の概略斜視図である。
本発明の1つの態様による、図2Aのカラーフィルタの画像形成を示す概略図である。
本発明の別の態様による、図2Aのカラーフィルタの画像形成を示す概略図である。
本発明の一実施形態により用いられるズームシステム70の概略図である。
所望の「ストライプ配列」のカラーフィルタの一部の平面図である。
図6Aのストライプ状の特徴物の一部の詳細な平面図である。
特徴物のピッチ基準に基づく大きさを有する画素によって画像化された、図6Bに示されるストライプ状の特徴物部分を概略的に示す図である。
特徴物の大きさ基準に基づく大きさを有する画素によって画像化された、図6Bに示されるストライプ状の特徴物部分を概略的に示す図である。
放射ビームの走査によって形成された、先行技術によるグリッド状の画素配列を概略的に示す図である。
本発明の一実施形態で用いられる装置90を概略的に示す図である。
本発明の別の実施形態により実施される方法を示すフローチャートである。
本発明の一実施形態により、第一の画素を使って形成された、図6Bに示されるストライプ状の特徴物部分の一部を概略的に示す図である。
本発明の一実施形態により、第一の画素とは異なる第二の画素を使って形成された、図6Bに示されるストライプ状の特徴物部分の別の一部を概略的に示す図である。
本発明の一実施形態により、図9Aと9Bの第一と第二の画素を使って形成された、図6Bに示されるストライプ状の特徴物部分のいくつかの部分を概略的に示す図である。
本発明の別の実施形態により、画素で画像化された、図6Bに示されるストライプ状の特徴物部分を概略的に示す図である。
赤(R)のcolor feature、緑(G)のcolor feature、青(B)の色特徴物がモザイク配列で規則的に配列されているカラーフィルタの一部を示す図である。
第一の方向に沿って均一なピッチで配置された、不均等な大きさの特徴物のパターンを示す図である。] 図2A 図6A 図6B 図9A
実施例

[0030] 以下の説明全体を通じて、当業者がより十分に理解できるように、具体的な詳細が示されている。しかしながら、開示が不必要に不明瞭とならないように、公知の要素については詳細に図示または説明していないかもしれない。したがって、説明と図面は限定的な意味ではなく、説明的な意味として考えるものとする。]
[0031] 図2Aは、特徴物のパターンと、位置合わせ小領域のパターンを含む位置合わせ領域との望ましい整合状態の一例を示す。この例において、各特徴物は主走査軸42に平行な方向に沿って延び、複数の特徴物が副走査軸44に平行な方向に沿って規則的に配列されている。この例において、カラーフィルタ10は、カラーフィルタマトリクス20(細かい破線で一部が示されている)を含む位置合わせ領域47(大きな破線で示されている)を有する。カラーフィルタマトリクス(マトリクス20ともいう)は受容体要素18の上に形成された等間隔のセル34のパターンを含む。この例では、赤(R)のストライプ状の特徴物12、緑(G)のストライプ状の特徴物14および青(B)のストライプ状の特徴物16がマトリクス20と略整合した状態で形成され、「ストライプ配列」のカラーフィルタを形成することが望ましい。したがって、この例において、赤のストライプ状の特徴物12、緑のストライプ状の特徴物14および青のストライプ状の特徴物16からなる各パターンのピッチ“Pf”が、各位置合わせ小領域(つまり、セル34)のパターンのピッチ“Pr”と略等しいことが望ましい。特徴物は、異なるパターンで配置することもできる。あるパターンでは、特徴物が1つまたは複数の方向に沿って規則的に配列される。このようなパターンの場合、各特徴物は共通の基準、たとえば特徴物の縁辺、特徴物の隅、特徴物の中心点または特徴物のその他の部分等を有する。特徴物は、共通の基準の各々が、特徴物のパターンの配列方向に沿って等しい距離だけ相互に分離されるように配置される。この等しい距離を「ピッチ」と呼ぶ。] 図2A
[0032] 赤いストライプ状の特徴物12、緑のストライプ状の特徴物14および青のストライプ状の特徴物16は、各種の媒体を走査する放射ビームを利用する画像形成工程をはじめとするさまざまな工程によって形成することができる。この例では、各種の特徴物は、レーザ誘起熱転写工程で形成される。図2Bは、図2Aのカラーフィルタ10の製作に使用中のレーザ誘起熱転写工程を概略的に示す。画像形成材料(図示せず)を供与体要素24からその下の受容体要素18に転写するために、イメージングヘッド26が設けられている。供与体要素24は、受容体要素18より小さく描かれているが、これはわかりやすくするためにすぎない。供与体要素24は、必要に応じて、受容体要素18の1つまたは複数の部分と重なってもよい。イメージングヘッド26は、異なる数のイメージングチャネルの配列を有していてもよい。この図の場合、イメージングヘッド26はチャネルアレイ43を有しており、チャネルアレイ43は、均一な大きさで、アレイの配列方向に沿って繰り返される、個別にアドレス指定可能なチャネル40からなる。この例では、配列方向は副走査軸44に平行である。画像形成材料は、イメージングヘッド26により放出される放射ビーム(図示せず)で供与体要素24全体を走査する際、供与体要素24から受容体要素18に画像に従って転写される。フィルタ10の赤、緑および青の部分は一般に、それぞれ別の画像形成ステップで画像化され、各画像形成ステップは、前の色供与体要素を画像形成対象となる次の色供与体要素と置き換えるステップを含む。フィルタの赤、緑、青の特徴物の各々は、対応するマトリクスセル34と略整合した状態で受容体要素18に転写されることになる。図2Bには、赤のストライプ状の特徴物12Dの画像形成だけ示す。分かりやすくするために、緑のストライプ状の特徴物と青のストライプ状の特徴物の画像形成は示していない。] 図2A 図2B
[0033] 色特徴物が転写されたら、画像化されたカラーフィルタに対して1つまたは複数の追加の処理ステップを実行してもよく、たとえば、画像化された色特徴物の1つまたは複数の物性(耐久性等)を変化させるための焼結ステップ等がある。]
[0034] レーザに基づくマルチチャネル式の画像形成工程により利用される照明システムの一例を図3に概略的に示す。複数のイメージングチャネルを作るために、空間光変調器またはライトバルブが用いられる。図の例においては、線形ライトバルブアレイ100は、半導体基板102の作製された複数の変形可能なミラー要素101を備える。ミラー要素101は個別にアドレス指定可能である。ミラー要素101はMEMS(微小電気機械)要素、たとえば変形可能なミラーマイクロ構造とすることができる。レーザ104は、円筒レンズ108、110を備えるアナモルフィックビームエキスパンダを使ってライトバルブ100に向かう光源線106を発生することができる。光源線106は、複数の要素101の全体にわたって横方向に広がり、ミラー要素101の各々が光源線106の一部によって照明されるようになっている。ゲルバート(Gelbart)の米国特許第5,517,359号明細書には、光源線を形成するための方法が記されている。] 図3
[0035] レンズ112は通常、要素101が非作動状態にあるとき、開口絞り116の開口114を通じてレーザ照明を合焦させる。作動された要素からの光は、開口絞り116によって遮断される。レンズ118はライトバルブ100を結像させて、個別の画像に従って変調された複数のビーム120を形成し、これで基板の全領域を走査して、画像化された帯を形成することができる。ビームの各々は、要素101の1つによって制御される。各要素101は、マルチチャネル式イメージングヘッドの中の1つのイメージングチャネルに対応する。]
[0036] 放射ビームの各々は、対応する要素101の駆動状態にしたがって、画像が形成される受容体要素の上に「画素」を画像化するように、あるいは画像化しないように動作する。つまり、画像データにより、画素を画像化することが必要な場合、ある要素101は、基板上に画素画像を形成するのに適した強度と持続時間を有する、対応する放射ビームを発生するように駆動される。画像データにより、画素を画像化しないことが必要な場合、ある要素101は、放射ビームを発生しないように駆動される。本明細書において、画素とは基板上の画像の1つの要素を指し、組み立てられた表示装置の上に表示される画像の一部に関連して使われる画素という用語とは異なる。たとえば、本発明を使ってカラー表示体用フィルタを製作する場合、本発明によって作られる画素は、隣接する画素と結合して、表示装置上に表示される画像の1つの画素(特徴物ともいう)を形成する。]
[0037] 図2Bは、イメージングチャネル40と転写されたパターンの間の対応を破線41で示す。画像化されたストライプ状の特徴物12D等の特徴物は一般に、イメージングチャネル40によって画像化される画素の幅より大きく、したがって複数の画素(図示せず)で画像化される。イメージングヘッド26によって発生される放射ビームは、書き込まれるべき特徴物のパターンを特定する画像データに従って画像のとおりに変調されながら、受容体要素18を走査する。チャネルの集合48は、ある特徴物を形成することが望まれる場合は必ず放射ビームを生成するように駆動される。特徴物に対応しないチャネル40は、その対応領域上に画像を形成しないように駆動される。] 図2B
[0038] 受容体要素18、イメージングヘッド26またはその両方を、相互に関して移動させることができ、その間、イメージングチャネル40は、画像データに応答して制御されて画像帯を作る。ある場合には、イメージングヘッド26は静止したままで、受容体要素18が移動される。別の場合には、受容体要素18が静止したままで、イメージングヘッド26が移動される。また別の場合には、イメージングヘッド26と受容体要素18の両方が移動される。]
[0039] イメージングチャネル40は、イメージングヘッド26の走査中に画像帯を形成するように作動させることができる。受容体要素18は、1本の画像帯の中では画像化できないような大きいものとすることができる。したがって、受容体要素18の上に画像を完成させるためには、一般にイメージングヘッド26で複数回走査することが必要となる。]
[0040] イメージングヘッド26を副走査軸44に沿って移動させるのは、主走査軸42に沿った各帯の画像成形が完了した後でもよい。あるいは、ドラム型のイメージャでは、主走査軸42と副走査軸44の両方に沿ってイメージングヘッド26を相対的に移動させることも可能であり、こうすることによって、ドラム上でらせん状に延びる画像帯を書き込むことがきる。図2Bでは、主走査軸42と一致する経路に沿って、イメージングヘッド26と受容体要素18が相対的に移動されている。] 図2B
[0041] 受容体要素18に関してイメージングヘッド26を移動させるためには、どのような好適なメカニズムを利用してもよい。表示パネルの製造において一般的なように、比較的剛性で平らな受容体要素18の画像化には、通常、平床式イメージャが使用される。平床式イメージャは、受容体要素18を平らな状態に固定する支持手段を有する。ゲルバートの米国特許第6,957,773号明細書には、表示パネルの画像形成に適した高速平床式イメージャが記載されている。あるいは、柔軟な受容体要素18であれば、「ドラム型」の支持手段の外面または内面のいずれかに固定して、画像帯の画像化を行ってもよい。]
[0042] 図2Bにおいて、複数の放射ビームで走査方向への走査が行われ、その結果、主走査軸42に略平行な画像帯ができる。しかしながら、マトリクス20が主走査軸42と副走査軸44に関して歪曲した体勢をとることがあるため、この走査方向は必ずしもすべての状況において適当であるとはかぎらない。マトリクス20の体勢が歪曲する理由は多数あり、たとえばイメージングデバイス内の受容体要素18の配置誤差がその1つである。体勢が歪曲している場合、マトリクス20と正確に整合させるために、各種の画像化された特徴物を歪曲させた方法で形成することが必要となる。歪曲した特徴物または歪曲した縁辺を有する特徴物は、放射ビームを走査経路に沿って方向付ける際に、受容体要素18とイメージングヘッド26との相対的運動を確実に制御することによって画像化されてきた。この例では、副走査運動を、歪曲の程度に応じて主走査運動と協調させる。主走査運動は、イメージングヘッド26と受容体要素18の間で行われるため、これら2つの間では副走査運動も同期させて、「協調的運動(coordinated motion)」と呼ばれる運動が行われるようにする。画像帯がらせん状に画像化され、ドラムが1回転する間の副走査運動の量が通常、形成されるべき画像とは関係なく決定されるようなドラム式の画像形成方法とは異なり、協調的運動方式を用いる場合、各走査中の副走査運動の量は、形成されるべき画像に依存する。協調的運動は、要求の厳しい用途において、特徴物のパターンと位置合わせ小領域のパターンとを整合させやすくするために用いられることのある、非常に平滑で連続的な縁辺を有する特徴物を形成するのに利用できる。] 図2B
[0043] 図2Bは、上述の画像形成方式で、図2Aに示される特徴物のパターンを画像化する際の問題点を概略的に示している。画像化されたストライプ状の特徴物12Dは、図2Aの所望の赤のストライプ状の特徴物12を対応するセル34と整合させた状態で画像化しようとする試みにおいて形成される。この例において、イメージングヘッド26は、イメージングチャネル40の配列方向がセル34のパターンの配列方向に略平行となるような体勢をとる。図2Bに示されるように、アレイ43の中のイメージングチャネル40の分解能では、セル34のピッチPrと等しいピッチで、赤のストライプ状の特徴物12Dの所望の繰返しパターンを画像化することができない。基本的に、走査直交方向(つまり、走査方向に直交する方向)へのイメージングチャネルの分解能によって、画像化される赤のストライプ状の特徴物12Dは、Prと等しくない初期ピッチPiで形成されることになる。この例では、走査直交方向は副走査軸44に平行である。] 図2A 図2B
[0044] 画像化される赤のストライプ状の特徴物12Dの各々の大きさと位置は、画素の大きさに応じて制御できる。イメージングヘッド26により発生される放射ビームの各々が作る画素の走査直交方向に沿った大きさでは、画像化される赤のストライプ状の特徴物12Dの画像化されるパターンを、赤のストライプ状の特徴物12の所望のパターンのピッチとマッチするピッチで形成することができない。つまり、所望のピッチは、画素の走査直交方向に沿った大きさの倍数と等しくない。イメージングチャネル40の分解能によって、画像化される赤のストライプ状の特徴物12Dの各々の走査直交方向に沿った大きさを、対応する所望の赤のストライプ状の特徴物12の大きさと等しくすることができる場合とできない場合があるが、所望のピッチとマッチさせることは、分解能ではできない。]
[0045] 図2Bに示されるように、画像化された赤のストライプ状の特徴物12Dは、対応するセル34から異なる量だけずれる。この図の場合、位置ずれの量が増大し、赤のストライプ状の特徴物12DAがマトリクス20の領域45において他の色の供与体要素で画像化された他の特徴物と重複するほどになることもある。また、領域49では、いくつかのマトリクスセル34が赤のストライプ状の特徴物12Dによって完全に覆われないため、無色の空隙が形成される可能性がある。これらの影響はどちらも、最終的なカラーフィルタが不要な視覚的特徴を有することになる原因となる。これらの影響は、画像形成の生産性を高めるためにより多くのイメージングチャネル40の配列を用いると、さらに悪化することが明らかとなる。領域45、49は、分かりやすくするために影付けされている点に注意する。] 図2B
[0046] 図4Aは、本発明の一態様による、図2Aの受容体要素18の画像形成を概略的に示している。図4Aには、図2Aの所望の赤のストライプ状の特徴物12についての画像形成工程だけが示される。分かりやすくするために、所望の緑のストライプ状の特徴物14と青のストライプ状の特徴物16は考慮されていないが、所望の赤のストライプ状の特徴物12の画像形成と同じ方法で扱うことができる。赤のストライプ状の特徴物12Eは、図2Bの画像形成工程で示されているものと同じイメージングヘッド26で画像化される。本発明のこの態様によれば、イメージングヘッド26は、副走査軸44とイメージングチャネル40の配列方向の間の角度θだけ回転される。角度θは、回転されたイメージングヘッド26の分解能が、赤のストライプ状の特徴物12Eの画像化されたパターンがセル34のピッチPrと略等しいピッチPfで形成されるような大きさになるように選択される。これで、所望のピッチは赤のストライプ状の特徴物12Eのパターンを形成するために使用された画素(図示せず)の走査直交方向の大きさの整数倍と等しくなる。イメージングヘッド26を回転させることによって、画像化される画素の大きさが変化する。結果として得られる画像化された画素の大きさで、画像化された赤のストライプ状の特徴物12Eの走査直交方向の大きさは、対応する図2Aの所望の赤のストライプ状の特徴物12の走査直交方向の大きさと等しくなるかもしれないし、ならないかもしれない。しかしながら、画素を、必要なピッチに適した大きさに調節することによって、マッチしないピッチにより生じるかもしれない前述のアーチファクトの多くをほとんど回避できる。] 図2A 図2B 図4A
[0047] 図4Aでは、イメージングヘッド26が副走査軸44を基準として角度θだけ回転されているが、その他の基準も容易に利用できると理解される。] 図4A
[0048] 画像化された画素の、走査方向に直交する方向に沿った大きさを変更するためには、他の方法も利用できる。図4Bは、本発明の別の態様による、図2Aの受容体要素18の画像形成を概略的に示す。分かりやすくするために、図4Bでは、所望の赤のストライプ状の特徴物12に関する画像形成工程だけを示している。本発明のこの態様によれば、イメージングヘッド26はズームメカニズム70を備える。ズームメカニズム70は、イメージングヘッド26から放出される放射ビームの大きさを、画像化された赤のストライプ状の特徴物12Fのパターンが、セル34のピッチPrに略等しいピッチPfで画像化されるように調節する。] 図2A 図4B
[0049] 図5は、本発明の各種の実施形態で利用できるズームシステム70を概略的に示す。ズームシステム70は、固定フィールド(fixed field)光学コンポーネント71、2つ以上の移動式ズーム光学コンポーネント72、開口絞り73、固定光学コンポーネント74、移動式焦点合わせ光学コンポーネント75を備える。この実施形態では、開口絞り73がズーム光学コンポーネント72と固定光学コンポーネント74の間に配置されている。ズームメカニズム70は、物体面76と像面77の位置をズーム調整範囲内に保持する。ズーム光学コンポーネントの位置をさまざまな位置に移動させて、光学システムの倍率を設定する。各光学コンポーネントが1つまたは複数のレンズを備えていてもよい。光学コンポーネントの1つまたはいくつかを、アナモルフィックとすることができる。本発明では、他のタイプのズームメカニズムも使用できる。] 図5
[0050] 必要なピッチは、いろいろな方法で決定できる。たとえば、位置合わせ小領域(たとえばマトリクス)のパターンのピッチは、直接測定によって決定できる。さまざまな位置合わせ小領域の位置の検出には各種の光センサを使用でき、検出された位置を使って、小領域間のピッチを決定することができる。画素、放射ビームまたは画像帯そのものの大きさも直接測定によって決定でき、これを利用して特徴物のパターンのピッチを位置合わせ小領域パターンのピッチにマッチさせることができる。異なるピッチを異なる方向で決定でき、走査方向に直交する方向に限定する必要はない。特徴物のパターンとしては、特徴物が異なる方向に沿って規則的に配列されるような特徴物のパターンでもよい。このようなパターンの場合、画像形成工程はさらに複雑となる可能性がある。]
[0051] 図2Aは、カラーフィルタのある色の特徴物が、マトリクス20と整合した状態で走査方向に沿って延びるストライプ状の特徴物を形成することによって生成されるような、単純化された「ストライプ配列」のカラーフィルタを示している。前述のように、各種のストライプ状の特徴物12、14、16を、ストライプ状の特徴物とセル34の間で走査直交方向の「ピッチマッチ」が可能になるように十分に制御して形成する必要がある。図2Aの単純化されたケースでは、このような制御は走査方向については不要のようであり、それは、ストライプ状の特徴物が走査方向には基本的に中断されずに延びるからである。] 図2A
[0052] 図6Aは、別の所望のストライプ配列のカラーフィルタ10を示す。この例において、赤(R)のストライプ状の特徴物12G、緑(G)のストライプ状の特徴物14G、青(B)のストライプ状の特徴物16Gの各々は、この例では主走査軸42に平行な方向に延びるさまざまな縁辺を有する。これらの縁辺のいくつかは中断される。この例では、中断箇所はストライプに沿った異なる場所に規則的に配列された切り欠き部80である。切り欠き部80は、いろいろな理由で必要となることがある。この例において、切り欠き部80は、受容体要素18の上に設けられる各種のパターンスペーサ82を配置するために必要とされている。] 図6A
[0053] パターンスペーサ82は、受容体要素18と、組み立てられた最終的な表示体の一部を形成するTFT(薄膜トランジスタアレイパネル)(図示せず)との間のギャップを制御するために使用される。受容体要素18とTFTパネルの間には、液晶材料(図示せず)が介在する。液晶材料の特徴は各種の電気信号に従って変化され、カラーフィルタの選択された特徴物をアクティブ化または非アクティブ化する。カラーフィルタを内蔵する表示体の視覚的品質は、受容体要素18とTFTの間に略均一な間隔が保持されるか否かによって左右される。この間隔にばらつきが生じると、不快な視覚的アーチファクト(ムラ欠陥等)か発生する原因となる。このように間隔を略均一とするために、各種のパターンスペーサ82が使用される。各種のパターンスペーサ82は、好ましくは、フィルタの各種の色特徴物の形成中に受容体要素またはマトリクスの線に転写された画像形成材料の上ではなく、受容体要素18の基板上またはマトリクス20の上に直接取り付けられる。これは、転写された画像形成材料の厚さにかかわるばらつきを避けるために行われる。図6Aに示されるように、パターンスペーサ82は、マトリクス20のさまざまなエリアの上に直接形成される。ストライプ状の特徴物12G,14G,16Gの各々には、これらのエリアの付近で切り欠き部が設けられる。] 図6A
[0054] 切り欠き部80の各々は、特定の大きさと位置による制約を受ける。この例の場合、各切り欠き部80は、切り欠き部80の各々がピッチPnにしたがって位置付けられるような切り欠き部80のパターンに属する。ピッチPnは、パターンスペーサ82を設置できるように切り欠き部80をマトリクス20に関して所望の位置に配置するために必要である。切り欠き部80を所望のピッチPnで形成できないと、切り欠き部80がストライプの方向に沿って正しく位置付けられず、それがパターンスペーサ82を必要な箇所に設置することに影響を与える場合がある。]
[0055] 各切り欠き部80のストライプの方向に沿った大きさAは、さまざまな制約を受ける。この例の場合、切り欠き部の各々は、対応するパターンスペーサ82の大きさを受け入れるのに十分な大きさでなければならない。さらに、各切り欠き部80の大きさはマトリクス20の線の幅の範囲内でなければならず、これは、切り欠き部がマトリクスの線の境界の外で形成されると、隣接するセル34のエリアに無色の空隙が発生する可能性があるからである。ストライプ状の特徴物の各々とこれに関連する切り欠き部80を形成するために使用される画素の位置誤差等の要因により、一般に、マトリクスの線の縁辺と切り欠き部の縁辺との間により大きな余白を設けることが必要となる。一般的なカラーフィルタのマトリクスの線の幅は通常、約20ミクロン程度であり、より細い線を使用することが強く望まれる。線の幅をより細くすると、従来の画像形成技術では、このような中断された特徴物を正確に形成することはさらに困難となる可能性がある。]
[0056] 図6B、6C、6Dは、「ピッチ」をマッチさせる要求と「大きさ」をマッチさせる要求との矛盾を概略的に示している。図6Bは、図6Aに示される所望のストライプ状の特徴物の一部の詳細な図である。所望のストライプ状の特徴物12Gは、マトリクス20の一部に形成されたセル34(破線で示される)に関連して示されている。この例では、ピッチPnの大きさは、切り欠き部80の大きさAの整数倍と等しくない。切り欠き部は通常、複数の画素によって形成される。画素の大きさは、形成可能な最小限の画素の大きさより大きいものとしなければならない。所望の大きさの切り欠き部を設けるためには整数個の画素が必要であり、整数個の画素はピッチPnとマッチしなければならない。] 図6A 図6B
[0057] 図6C、6Dは、画像データにしたがって制御されるイメージングヘッド(図示せず)を利用した画像形成工程中に受容体要素18の上に形成される画素の配列を示す。放射ビームで媒体を横切る走査線に沿って走査する間に、各種の画素が媒体上に画定され、画像形成領域では画像化された画素84A、84Cが形成され、非画像形成領域では画像化されない画素84B、84Dが形成される(画像化された画素と画像化されない画素のすべてをまとめて画素84という)。これらの例において、形成されたストライプ状の特徴物12H、12Jは、画素84を形成する際の走査方向に平行な方向に沿って延びる。] 図6C
[0058] 各画素84の大きさは方向によって異なっていてもよい。この例の場合、画像化された画素84A、84Cの走査方向に沿った大きさは異なる。画像化されない画素84B、84Dの走査方向に沿った大きさもまた異なる。このような画素は各種の方法で作ることができる。たとえば、図6Eは、受容体要素18を放射ビーム(図示せず)で走査することによって形成された、先行技術によるグリッド様の画素84の配列を概略的に示している。画素84の各々の大きさは、画素84を形成するための走査方向に沿って“a”、走査直交方向に“b”である。この例において、各画素84の具体的な大きさは、各画素84の領域を長方形の放射スポット85で走査することによって得られる。この走査は、画像全体の走査の一部として行われる。画素領域をスポットで走査するには、速度“V”の相対的運動が必要である。この相対的運動は、放射スポット85を移動させることによって、あるいは受容体要素18を移動させることによって、あるいは両方を移動させることによって起こすことができる。この例において、走査方向は相対的運動の方向に平行であり、走査方向へのスポットの大きさは“w”である。レーザスポットが媒体のいずれかの地点の上に滞在する時間は、w/Vで決まる。この例において、画像化された画素からなる画素の走査方向への大きさは、その画素を形成するために使用された放射ビームの初期の大きさ“w”とそのビームで受容体要素18を走査する時間の長さによって決まる。これに対して、画像化されない画素の走査方向に沿った大きさは、受容体要素18が放射ビームで走査されていない時間の長さによって決まる。走査方向に沿った大きさは速度を変化させることによって調整できるが、それによって、放射ビームによる露光が変化する場合がある。ある走査速度での走査方向に沿った画素の大きさを変化させるための一般的な方法には、イメージングチャネルがアクティブ化されている時間の長さを調整するステップが含まれる。たとえば、ライトバルブを用いる一部のイメージングシステムでは、タイミングパルスのパターンを含むタイミング信号がライトバルブ素子のすべてに供給され、各素子が画像データにしたがってアクティブ化される。タイミングパルス間の時間は、各ライトバルブ素子が画像データに応じてアクティブ化できる時間またはアクティブ化できない時間の長さに関連しており、その結果、画像データにしたがって形成される画素の走査方向に沿った大きさを決定する。] 図6E
[0059] 長方形の放射スポット85は、長方形の開口を使用する等、さまざまな方法で作ることができる。しかしながら、スポットは長方形である必要はなく、希望に応じてその他の形状とすることもできる。画素の大きさを変更するためのその他の方法は、当業界で知られている。]
[0060] 図6Cにおいて、走査方向に沿った画素84の大きさは、画像化されるストライ状の特徴物12Hが、ピッチ要求を満たすように画像化されるように選択されている。すなわち、画像化された切り欠き部80AのピッチPniは、図6Bにおける所望のノッチ80の所望のピッチPnとマッチする。この例の場合、走査中に放射ビームがアクティブ化および非アクティブ化されて、画像化された画素84Aと画像化されない画素84Bを形成しており、これらの画素の各々は、所望のピッチが実現されるような大きさYpである。換言すれば、イメージングシステムの走査方向への分解能は、「ピッチ」をマッチさせるように調整されており、所望のピッチPnは、大きさYpの整数倍に略等しい。しかしながら、この分解能では、走査方向に所望の大きさAの切り欠き部80を形成することができない。図6Cにおいて、画像化された切り欠き部80Aの大きさApは、図6Bに示される所望の大きさAより大きい。この画像形成分解能によれば、画像化された切り欠き部80Aはセルエリア34の領域83Aまで延び、その影響によって不要な視覚的アーチファクトが発生しうる。分かりやすくするために、領域83Aは影付けされている。] 図6B 図6C
[0061] 図6Dは、画像データにしたがって制御されるイメージングヘッド(図示せず)を使用した画像形成工程中に受容体要素18の上に形成される画素84の配置を示す。図6Cとは異なり、図6Dの画素84の走査方向に沿った大きさは、画像化されるストライプ状の特徴物12Jが、走査方向(ここでも、ストライプ状の特徴物が延びる方向に平行)に沿った大きさAsが図6Bに示される所望の大きさAに略等しい切り欠き部を有して形成されるように選択されている。この例では、走査中に放射ビームがアクティブ化および非アクティブ化されて、所望の大きさAが実現されるような大きさYsの画素84を形成する。換言すれば、イメージングシステムの走査方向への分解能は、大きさAが大きさYsの整数倍となるように大きさYsが選択されているため、「大きさ」をマッチさせるよう調整されている。しかしながら、この分解能では、画像化される切り欠き部80Bを走査方向に所望のピッチPnとなるように形成することができず、これは画像化された切り欠き部が、所望のピッチPnと等しくないピッチPsとなるように離間されているからである。この例の場合、所望のピッチPnは画素大きさYsの整数倍と等しくない。図6Dに示されるように、画像化された切り欠き部80Bは、図6Bに示される所期の位置からずれている。その結果、画像化された切り欠き部80Bの一部はセルエリア34の領域83Bの中に形成されている。これは、不要な視覚的アーチファクトの原因となりうる。分かりやすくするために、領域83Bは影付けされている。当業者であれば、走査方向に沿って新たな画素84が引き続き形成されるにつれて、形成された切り欠き部80Bとセル34のずれの量が変化するため、この問題はさらに重大化することがすぐにわかるであろう。] 図6B 図6C 図6D
[0062] 図7は、本発明の一実施形態において使用される装置90を概略的に示す。装置90は、受容体要素18の上に画像を形成するように動作できる。本発明のこの実施形態では、画像は、受容体要素18の走査中に、放射ビームを方向付けるようにイメージングヘッド26を動作させることによって、画像が受容体要素18の上に形成される。] 図7
[0063] 装置90は、主走査軸42と一致する経路に沿って受容体要素18を搬送するように動作可能なキャリア92を有する。キャリア92は、往復運動可能である。本発明のこの実施形態において、キャリアは順方向42Aおよび逆方向42Bに移動可能である。イメージングヘッド26は、キャリア92にまたがる支持手段93の上に移動自在に配置される。イメージングヘッド26は、副走査軸44と一致する経路に沿って移動するように制御される。本発明のこの実施形態において、イメージングヘッド26は、支持手段93に沿って移動するように制御することができる。イメージングヘッド26は、遠ざかる(away)方向44Aと帰還する(home)方向44Bに移動可能である。装置90は、受容体要素18を双方向に走査することによって画像を形成する。]
[0064] 本発明のこの実施形態では、レーザ誘起熱転写工程が用いられる。イメージングヘッド26は複数の放射ビームで媒体を走査するように制御され、その結果、画像形成材料(図示せず)が供与体要素24から受容体要素18に転写される。画像形成用電子機器(図示せず)はイメージングチャネル40を制御して、放射ビームの放出を調整させる。イメージングチャネル40は、それを「オン」にして、放射ビームを放出させることができる。この例では、放射ビームは、そのチャネルに対応する走査線に沿って、供与体要素24から受容体要素18に材料を転写するために使用できる。イメージングチャネル40は、それを「オフ」にして、放射ビームを放射させないようにしてもよい。各ビームの強度は、イメージングチャネルを「オフ」にする非アクティブの強度レベルから、チャネルを「オン」にするアクティブの強度レベルへと制御できる。非アクティブの強度レベルは、ゼロの強度レベルまたはさまざまな光漏れの影響を示す弱い強度レベルであってもよい。本発明のある実施形態(たとえば、個別にモジュール化されたレーザ光源等)では、非アクティブの強度レベルはゼロである。]
[0065] 運動システム94(1つまたは複数の運動システムを含んでいてもよい)は、キャリア92を運動させるための適当なドライブ、変速部材および/または案内部材を備える。本発明のこの実施形態において、運動システム94はイメージングヘッド26の運動を制御し、キャリア92の運動を制御する。当業者であれば、装置90内の異なるシステムを動作させるのに別の運動システムを使用してもよいことに気づくであろう。]
[0066] コントローラ60は、1つまたは複数のコントローラを含んでいてもよく、装置50の中の1つまたは複数のシステム、たとえば、キャリア92とイメージングヘッド62によって使用される運動システム94等を制御するために使用される。コントローラ60はまた、受容体要素18と供与体要素24の設置および/または取り外しを開始できる媒体取扱メカニズムを制御することもできる。コントローラ60はイメージングヘッド26に画像データ240を供給し、イメージングヘッド26を、このデータにしたがって放射ビームを放出するように制御することもできる。各種のシステムは、各種の制御信号を使って、および/または各種の方法を用いて制御できる。コントローラ60は、適当なソフトウェアを実行するように構成することができ、1つまたは複数のデータプロセッサと適当なハードウェアとともに備えていてもよく、これらのハードウェアとしては、たとえばアクセス可能メモリ、ロジック回路、ドライバ、アンプ、A/DおよびD/Aコンバータ、入力/出力ポート等があり、これらに限定されない。コントローラ60は、たとえば、マイクロプロセッサ、computer−on−a−chip、コンピュータのCPUまたはその他の好適なマイクロコントローラとすることができる。]
[0067] 図8は、本発明の一実施形態によって図6Aに示されるストライプ状の特徴物12G、14G、16G等の特徴物のパターンを画像化するためのフローチャートである。分かりやすくするために、ストライプ状の特徴物12Gだけが考慮されているが、各々のストライプ状の特徴物14G、16Gのパターンも本発明による方法によって、あるいはその他の方法によって画像化できると理解される。図8のフローチャートに関する以下の説明は、図7に概略的に示された装置90に関するものであるが、図の工程には他の装置も適していると理解される。] 図6A 図7 図8
[0068] 工程はステップ300で各種の特徴物のピッチを決定することから始まる。たとえば、図6Bに関して、ストライプ状の特徴物12Gは、距離Pnで等間隔に離間された共通の基準縁辺86を有する、連続した特徴物の配列としてみなすことができる。] 図6B
[0069] ステップ310で、1つの特徴物の第一の方向に沿った大きさ特性を選択する。本発明のこの実施形態において、第一の方向は切り欠き部80の配置方向に平行である。本発明のこの実施形態において、第一の方向は、イメージングヘッド26から放出される放射ビームの走査方向に平行である。特徴物の大きさ特性は、特徴物の第一の方向に沿った全体の大きさ、特徴物の一部分の第一の方向に沿った大きさ、または特徴物のある要素の第一の方向に沿った大きさ等とすることができる。たとえば、図6Bに関して、切り欠き部80を各特徴物の要素と考えることができる。適当な第一の方向に沿った大きさ特性は、切り欠き部80の大きさAである。] 図6B
[0070] ステップ320で、走査方向に沿った第一の分解能を、少なくとも、すでに決定された第一の方向に沿った大きさ特性に基づいて決定する。たとえば、図6Bに示される切り欠き部80の場合、第一の分解能は、所望の大きさAの切り欠き部80を形成できるような、走査方向に沿った第一の大きさを有する第一の画素88を生成するように選択する。第一の画素88の配置例を図9Aに示す。この配置には、切り欠き部80およびこれに関連するストライプ状の特徴部の周辺部分を形成するように配列された、画像化された画素88Aと画像化されない画素88Bが含まれる。] 図6B 図9A
[0071] ステップ330で、走査方向に沿った第一の分解能とは異なる、走査方向に沿った第二の分解能を、ピッチと第一の分解能にしたがって決定する。たとえば、図6Bに示されるストライプ状の特徴物12Gの場合、第二の分解能は、残りの部分(すなわち、この実施形態においては、切り欠き部80に関連するもの以外の特徴部の部分)を、これらの部分が所望の大きさで形成され、特徴物の所望のピッチPnが保持されるように形成することができるような、走査方向に沿った第二の大きさを有する第二の画素89が生成されるように選択される。この実施形態では、第二の大きさは、ピッチPnを境界とする特徴物12Gの残りの部分の大きさに基づいて決定される。第二の画素89の配置例を図9Bに示す。画素89は、画像化された画素と画像化されない画素を含んでいてもよい。この実施形態において、第二の画素89は画像化された画素の適当な配列を含み、画像化された画素の走査方向に沿った大きさは、所望のストライプ状の特徴物12Gのうち、切り欠き部80に関わる部分以外の部分を形成し、所望のピッチを維持できる大きさである。有利な点として、ストライプ状の特徴物12Gは、カラーフィルタの特徴物のパターンが、マトリクス20のセル34のピッチとマッチするピッチで形成され、各特徴物の切り欠き部80が正しい大きさになるように形成される。図9Cは、本発明の上記の実施形態によって画像化されたストライプ状の特徴物12Gを示す。画素88、89は、各種の走査線に沿って形成されて、ストライプ状の特徴物12Gを形成する。] 図6B 図9B 図9C
[0072] ステップ340で、イメージングヘッド26を動作させて、走査方向に沿った第一の大きさを有する画素と、走査方向に沿った第二の大きさを有する画素を形成するように放射ビームを放出させることによって、特徴物を形成する。本発明のこの実施形態において、所望のピッチPnは、第一の大きさと第二の大きさのいずれの整数倍とも等しくない。本発明のこの実施形態では、画素の大きさは、イメージングチャネルをアクティブ化してビームを放出させる時間の長さを調整することによって変えられる。本発明の他の実施形態では、他の方法で走査方向に沿った画素の大きさを変化させてもよい。図8に示すステップの順序は一例にすぎず、本発明の他の実施形態ではこれらのステップを別の順序で実行できることが理解される。] 図8
[0073] 本発明のいくつかの実施形態において、特徴物のパターンは、2つより多くの異なる分解能等、複数の分解能で画像化される。本発明のこれらの実施形態のいくつかにおいて、特徴物のパターンの中の特徴物のピッチは、複数の走査分解能のうちの少なくとも1つの分解能(すなわち、走査方向に沿った分解能)の整数倍と等しくない。いくつかの実施形態では、特徴物のその他の部分は、走査方向に沿った大きさがその特徴物の第一の部分の大きさ特性にしたがって決定された画素で画像化することができる。たとえば、図9Dは、図9Bのストライプ状の特徴物12Gを画像化するために使用される本発明の実施形態の1つの変形版を示す。図9Dにおいて、ストライプ状の特徴物12Gのうち、切り欠き部80に対応する部分は、前述のように決定される大きさの画素88で画像化される。しかしながら、図9Dには、ストライプ状の特徴物12Gの他の部分87(分かりやすくするために影付けされている)もまた画素88で画像化されることを示している。ストライプ状の特徴物12Gの残りの部分は、所望のピッチPnと画素88の大きさにしたがって決定される大きさを有する画素89Aで画像化される。本発明のこの実施形態において、所望のピッチPnはストライプ状の特徴物12Gのうちの画像化された部分のいずれの整数倍とも等しくない。] 図9B 図9D
[0074] いくつかの実施形態において、ある特徴物の1つまたは複数の部分は、その特徴物と、特徴物のパターンの中の隣接する特徴物のような近隣の特徴物との間隔を画像化するのに使用された他の走査分解能とは異なる、所定の走査分解能で画像化することができる。しかしながら、各種の走査分解能は、これらが複合されて、特徴物が特徴物のパターンの所望のピッチにしたがって画像化されるように適正に決定される。これらの実施形態のいくつかにおいて、ピッチは、間隔の大きさの整数倍と等しくなくてもよい。所望のピッチは、特徴物の少なくとも1つの、複数の分解能の1つで画像化される部分の大きさの整数倍と等しくなくてもよい。]
[0075] 本発明のいくつかの実施形態において、特徴物のパターンは二次元の特徴物のパターンであり、特徴物は第一の方向と、第一の方向に直交する第二の方向に沿って規則的に配列される。これらの実施形態では、特徴物を画素で画像化することができ、その画素の走査方向および走査方向に直交する方向に沿った大きさは、その特徴物が対応する第一と第二の両方の方向に沿って所望のピッチで形成されるように調整される。]
[0076] 本発明の各種の実施形態について、ストライプ状の特徴物を画像化するという点で説明してきた。しかしながら、本発明は、ストライプの画像形成に限定されず、その他の形状や配列の特徴物を画像化するためにも使用される。本発明は、島状の特徴物の画像形成にも応用できる。図10は、赤(R)の色特徴物30、緑(G)の色特徴物31および青(B)の色特徴物32がモザイク配列で規則的に配列されたカラーフィルタ10の一部を示しており、各種の特徴物の各々は周囲のマトリクス20の線と部分的にのみ重なるような大きさである。熱転写法を使用する場合、異なる色の特徴物はマトリクスの線の上では重なり合わないことが一般的に好ましい。供与体要素と受容体要素の間隔が変化すると、画像形成材料が受容体要素に転写される様子が変化することがある。図10は、一例として、赤の特徴物30が特定の大きさBを有し、パターンの配列方向に沿って特定のピッチPmで配置されなければならないことを示している。この実施形態において、ピッチPmは、大きさBの整数倍と等しくない。赤の特徴物30とそれらの間隔は、画像化された画素と画像化されない画素を含む、大きさの異なる画素のさまざまな集合で形成することができる。本発明の実施形態により、画素の各種の集合は、各集合内、または各集合間で大きさの異なる画素を有していてもよい。] 図10
[0077] 本発明の各種の実施形態について、1つまたは複数の特徴物がパターンの配列方向に沿って繰り返されるパターン関して説明してきた。しかしながら、本発明は繰り返される特徴物のパターンの画像形成に限定されず、特徴物の大きさと形状は異なるが、すべての特徴物が共通のピッチで配列されるような特徴物のパターンを形成するためにも使用することができる。たとえば、図11は、特徴物35が均一なピッチPr(各特徴物の左端の縁辺を基準とする)で第一の方向に配列されるパターンを示している。特徴物35の各々は、第一の方向に沿って異なる大きさを有する(大きさA1、A2、A3、A4、A5として示される)。この実施形態において、ピッチPrは、大きさA1、A2、A3、A4、A5の少なくとも1つの整数倍と等しくない。本発明の各種の実施形態によって、所望のピッチPrですべての特徴物35を位置付けながら、各特徴物35をそれぞれの所望の大きさで形成することができる。] 図11
[0078] 本発明の各種の実施形態について、走査方向に略垂直な方向に延びる縁辺を有する特徴物に関して説明してきた。本発明はこれらの実施形態に限定されず、走査方向に関して歪曲した複数の方向に沿って延びる1つまたは複数の縁辺を有する特徴物を含む特徴物のパターンの形成にも応用できる。図1C、1D、1E、1Fは、縁辺が「歪曲した」特徴物のパターンの例を示している。縁辺が歪曲していることにより、特徴物の異なる部分の走査方向に沿った大きさは、その特徴物の形成に使用される画素の走査線によって異なることがある。本発明のいくつかの実施形態において、走査線に沿って形成される画素の走査方向に沿った大きさは、少なくとも、特徴物のある部分のその走査線に沿った大きさに基づいて決められる。本発明のいくつかの実施形態において、パターンの中で規則的に配列された特徴物は、走査方向に沿って第一の大きさを有する第一の画素と、少なくとも、第一の大きさと、その特徴物の部分の第一の走査線に沿ったピッチに基づいて決定される、走査方向に沿った第二の大きさを有する第二の画素を含む画素の第一の走査線で画像化される。これらの特徴物はまた、第一の大きさおよび第二の大きさと異なる走査方向に沿った大きさを有する少なくとも1つの画素を含む画素の第二の走査線で画像化することもできる。第二の走査線には、第二の走査線の中の別の画素の大きさと、その特徴物の部分の第二の走査線に沿ったピッチに基づいて決定される、走査方向に沿った大きさを有する少なくとも1つの画素を含めることができる。] 図1C
[0079] コントローラ60は、プログラム製品97を使って本明細書に記載された各種の方法を実行することができる。コントローラ60は、プログラム製品97を使って、装置90が必要とする各種の機能を実行することができる。このような機能の1つは、複数の異なる分解能を決定し、これらの分解能に基づいてイメージングヘッドを制御して、走査方向に沿った大きさの異なる画素を形成するような放射ビームを発生させることであってもよい。このような異なる分解能は、特徴物のパターンを媒体上に形成する際、これらの特徴物が第一の方向に沿って所望のピッチで規則的に配列され、各特徴物、特徴物の一部または隣接する特徴物の間の間隔が第一の方向に沿って所望の大きさで形成されるように決定される。これに限定されないが、プログラム製品97は、コンピュータプロセッサによって実行されると、コンピュータプロセッサに本明細書に記載の方法を実行させるような命令を含むコンピュータ読取可能信号群を記録するどのような媒体であってもよい。プログラム製品97は、さまざまな形態のいずれであってもよい。プログラム製品97は、たとえば、フロッピー(登録商標)ディスケット等の磁気記憶媒体、ハードディスクドライブ、CD ROM、DVD等の光データ記憶媒体、ROM、フラッシュRAM等の電子データ記憶媒体その他であってもよい。命令は、任意で、媒体上で圧縮および/または暗号化することもできる。]
[0080] 本発明の一実施形態において、プログラム製品97を使って、コントローラ60の構成を、イメージングヘッドを制御し、走査方向に沿って媒体を走査する間に、媒体上で第一の方向に沿って規則的に配列される特徴物のパターンを形成するように放射ビームを選択的に放出させるものとすることができる。イメージングヘッドは、画像化された画素と画像化されない画素を含んでもよい複数の画素を形成するように制御される。複数の画素は、走査方向に沿った第一の大きさを有する第一の画素と、走査方向に沿った第二の異なる大きさを有する第二の画素を含む。プログラム製品97は、特徴物の第一の方向に沿ったピッチを決定するか、コントローラ60にこれを決定させ、また、少なくとも、その特徴物の第一の方向に沿ったピッチと第一の画素の第一の大きさに基づいて第二の画素の第二の大きさを決定させる。したがって、プログラム製品97は、少なくとも、少なくとも1つのその他の画素の走査方向に沿った大きさに基づいて第二の画素の第二の大きさを決定することができ、またはコントローラ60にこれを決定させることができる。少なくとも1つのその他の画素の各々の、走査方向に沿った大きさは、第一の大きさおよび第二の大きさと異なっていてもよい。]
[0081] 上記の代わりに、または上記に加えて、コントローラ60は、適当なユーザインタフェースによってコントローラ60と通信するオペレータのガイダンスにしたがい、画素の大きさを手動で調整することを可能にしてもよい。各種の画素の大きさは、コントローラ60に入力される、あるいはプログラム製品97の中にプログラムされる適当なアルゴリズムおよび/またはデータに基づいて決定することができる。制御パラメータは画像形成の前に決定することができ、あるいは画像形成中にその場で決定してもよい。]
[0082] イメージングヘッド26は、個別にアドレス指定可能なイメージングチャネルを有するマルチチャンネル式のイメージングヘッドとすることができ、各チャネルは、画像画素を形成するように動作可能な放射ビームを生成できる。イメージングヘッド26は、イメージングチャネル40の一次元または二次元アレイをはじめとする、イメージングチャネル40の各種の配列を備えることができる。放射ビームの発生には、どのような好適なメカニズムを使用してもよい。放射ビームは、どのような好適な方法で配置してもよい。]
[0083] 本発明のいくつかの実施形態では、赤外線レーザを使用する。本発明人らは、レーザ誘起熱転写工程に、150μmのエミッタを用い、総出力約50W、波長830nmの赤外線ダイオードレーザアレイを使用している。本発明の実施には、可視光レーザ等の別のレーザも使用できる。どのレーザ光源を使用するかは、画像化されるべき媒体の特性によって選択してもよい。]
[0084] 本発明の各種の実施形態について、画像形成材料が受容体要素に転写されるレーザ誘起熱転写工程に関して説明してきた。本発明のその他の実施形態は、その他の画像形成方法や媒体でも実施できる。本発明の範囲から逸脱することなく、画像を異なる方法で媒体上に形成することができる。たとえば、媒体は、改質可能表面の特徴または特性が、画像形成のために放射ビームが照射されると変化するような、画像改質可能表面を有していてもよい。放射ビームを使い、媒体の表面を侵食して、画像を形成することができる。当業者であれば、異なる画像形成方法を容易に利用できることに気づくであろう。]
[0085] 特徴物のパターンについては、表示体内の色特徴物のパターンに関して説明してきた。本発明のいくつかの実施形態において、特徴物は、LCDディスプレイの一部であってもよい。本発明の他の実施形態では、特徴物はOLED(有機発光ダイオード)表示体の一部であってもよい。OLED表示体は、異なる配列を含んでいてもよい。たとえば、LCD表示体と同様に、白いOLED光源とともに使用されるカラーフィルタの中に異なる色特徴物を形成することができる。あるいは、表示体の中の異なる色の光源を、異なるOLED材料を使って、本発明の各種の実施形態で形成することができる。これらの実施形態では、OLEDベースの光源そのものが有色光の放出を制御し、必ずしもパッシブカラーフィルタを必要としない。OLED材料は、適当な媒体に転写することができる。OLED材料は、レーザ誘起熱転写方式によって受容体要素に転写できる。]
[0086] 本発明について、表示体と電子機器の製造における応用例を用いて説明してきたが、本明細書に記載した方法は、LOC(ラボ・オン・チップ)製造のための生体医学撮像で使用されるものをはじめとする他の用途にも直接応用できる。LOCデバイスには、各種の特徴物のパターンを含まれていてもよい。本発明は、医療、印刷、電子機器製造技術等、他の技術においても応用可能である。]
[0087] 実施形態は本発明を説明するものにすぎず、本発明の範囲から逸脱することなく、当業者は上記の実施形態のさまざまな変形版を考案できると理解すべきである。]
权利要求:

請求項1
媒体上に、イメージングヘッドから走査方向に沿った前記媒体の走査中に放出される放射ビームで特徴物のパターンの画像を形成する方法であって、前記パターンの中の前記特徴物は第一の方向に沿って規則的に配列されており、前記方法は、前記特徴物の前記第一の方向に沿ったピッチを決定するステップと、前記イメージングヘッドを制御して、前記媒体上に複数の画素で前記画像を形成するように選択的に前記放射ビームを放出させるステップであって、前記複数の画素は、前記走査方向に沿った第一の大きさを有する第一の画素と、前記走査方向に沿った第二の大きさを有する第二の画素を含み、前記第二の大きさは、前記第一の大きさと異なり、少なくとも、前記特徴物の前記第一の方向に沿った前記ピッチと前記第一の大きさに基づいて決定されるようなステップと、を含むことを特徴とする方法。
請求項2
請求項1に記載の方法であって、前記特徴物の前記第一の方向に沿った前記ピッチは、前記第一の大きさまたは前記第二の大きさのいずれの整数倍とも等しくないことを特徴とする方法。
請求項3
請求項1に記載の方法であって、前記特徴物のパターンは、前記第一の方向に沿って繰り返される特徴物を含むことを特徴とする方法。
請求項4
請求項1に記載の方法であって、前記第一の大きさは、少なくとも、前記特徴物のパターンの中の1つの特徴物の前記第一の方向に沿った大きさに基づいて決定されることを特徴とする方法。
請求項5
請求項1に記載の方法であって、前記第二の大きさは、少なくとも、前記特徴物のパターンの中の1つの特徴物の前記第一の方向に沿った大きさに基づいて決定されることを特徴とする方法。
請求項6
請求項1に記載の方法であって、前記第一の大きさは、少なくとも、前記特徴物のパターンの中の1つの特徴物の第一の部分の前記第一の方向に沿った大きさに基づいて決定され、前記特徴物の前記第一の部分は、前記特徴物の全体より小さいことを特徴とする方法。
請求項7
請求項1に記載の方法であって、前記第一の大きさは、少なくとも、前記特徴物のパターンの中の2つの隣接する特徴物の間の、前記第一の方向に沿った間隔に基づいて決定されることを特徴とする方法。
請求項8
請求項1に記載の方法であって、前記第一の画素と前記第二の画素の各々は画像化された画素であり、前記方法は、前記特徴物のパターンの中の1つの特徴物の少なくとも一部を、前記第一の画素と前記第二の画素の各々で形成するステップを含むことを特徴とする方法。
請求項9
請求項1に記載の方法であって、前記複数の画素は画像化された画素と画像化されない画素を含み、前記方法は、前記特徴物のパターンの中の1つの特徴物を、前記画像化された画素の少なくとも1つで形成するステップと、前記特徴物のパターンの中の前記特徴物とこれに隣接する特徴物との間の間隔を、前記画像化されない画素の少なくとも1つで形成するステップを含み、前記画像化された画素の前記少なくとも1つの各々の、前記走査方向に沿った大きさは、前記第一の大きさと前記第二の大きさのうちの一方と等しく、前記画像化されない画素の前記少なくとも1つまたは複数の各々の、前記走査方向に沿った大きさは、前記第一の大きさと前記第二の大きさのうちのもう一方と等しいことを特徴とする方法。
請求項10
請求項1に記載の方法であって、前記特徴物のパターンの中の1つの特徴物の第一の部分を、それぞれの前記走査方向に沿った大きさが前記第一の大きさと等しい1つまたは複数の画素で形成するステップと、前記特徴物の第二の部分を、前記走査方向に沿った大きさが前記第二の大きさと等しい1つまたは複数の画素で形成するステップを含み、前記特徴物の前記第一の部分の大きさは、少なくとも前記第一の方向に沿って、前記特徴物の前記第二の部分と異なることを特徴とする方法。
請求項11
請求項10に記載の方法であって、前記特徴物の前記第一の部分の大きさは、前記第一の方向と直交する第二の方向に沿って、前記特徴物の前記第二の部分と異なることを特徴とする方法。
請求項12
請求項10に記載の方法であって、前記特徴物の、前記第一の方向に沿った前記ピッチが、前記特徴物の前記第一の部分の前記第一の方向に沿った前記大きさまたは前記特徴物の前記第二の部分の前記第一の方向に沿った前記大きさのいずれの整数倍とも等しくないことを特徴とする方法。
請求項13
請求項10に記載の方法であって、前記特徴物の前記第一の部分と前記特徴物の前記第二の部分のうちの一方が、前記特徴物の前記縁辺における切り欠き部の一部であることを特徴とする方法。
請求項14
請求項1に記載の方法であって、前記特徴物のパターンの中の前記特徴物は、前記第一の方向と直交する第二の方向に沿って規則的に配列され、前記方法は、前記特徴物の前記第二の方向に沿ったピッチを決定するステップと、前記イメージングヘッドを制御して、前記第一の画素と前記第二の画素の各々を、前記走査方向と直交する方向に沿った第三の大きさで形成させるステップであって、前記第三の大きさは、少なくとも、前記特徴物の前記第二の方向に沿った前記ピッチに基づいて決定されるようなステップと、を含むことを特徴とする方法。
請求項15
請求項14に記載の方法であって、前記特徴物のパターンは、前記第二の方向に沿って繰り返す特徴物を含むことを特徴とする方法。
請求項16
請求項14に記載の方法であって、前記第三の大きさは、前記特徴物の前記第二の方向に沿った前記ピッチが、前記第三の大きさの整数倍と等しくなるように決定されることを特徴とする方法。
請求項17
請求項14に記載の方法であって、前記イメージングヘッドを制御して、前記第一の画素と前記第二の画素の各々を前記第三の大きさで形成させるステップは、前記イメージングヘッドを回転させて、前記イメージングヘッドの分解能を変えるステップを含むことを特徴とする方法。
請求項18
請求項1に記載の方法であって、前記イメージングヘッドはライトバルブを備え、前記方法は、前記ライトバルブの1つまたは複数のチャネルがオンにされ、またオフにされる時間の長さを変化させることによって、前記第二の大きさを前記第一の大きさと異なるようにするステップを含むことを特徴とする方法。
請求項19
請求項1に記載の方法であって、前記第一の方向は前記走査方向に平行であることを特徴とする方法。
請求項20
請求項1に記載の方法であって、前記媒体上に前記画像を熱転写工程で形成するステップを含むことを特徴とする方法。
請求項21
請求項1に記載の方法であって、前記特徴物のパターンは、異なる色の複数の特徴物を含み、各色の前記特徴物は別々に画像化されることを特徴とする方法。
請求項22
請求項1に記載の方法であって、前記特徴物のパターンは、カラーフィルタの特徴物のパターンを含むことを特徴とする方法。
請求項23
請求項1に記載の方法であって、前記特徴物のパターンは、同一の特徴物のパターンであることを特徴とする方法。
請求項24
媒体上に、イメージングヘッドから前記媒体の走査方向に延びる走査線に沿った走査中に放出される放射ビームで特徴物のパターンの画像を形成する方法であって、前記パターンの中の前記特徴物は第一の方向に沿って規則的に配列されており、前記方法は、前記特徴物の前記第一の方向に沿ったピッチを決定するステップと、前記イメージングヘッドを制御して、前記媒体上に前記画像を画素で形成するように前記放射ビームを選択的に放出させるステップと、前記イメージングヘッドを制御して、前記画素の集合からなる走査線を形成するステップであって、前記画素の前記集合は、前記走査方向に沿った第一の大きさを有する第一の画素と前記走査方向に沿った第二の大きさを有する第二の画素を含み、前記第二の大きさは、前記第一の大きさと異なり、前記画素の集合におけるすべての前記画素の前記走査方向に沿った合算の大きさは、前記特徴物の前記第一の方向に沿った前記決定されたピッチと等しいようなステップと、を含むことを特徴とする方法。
請求項25
請求項24に記載の方法であって、前記特徴物の前記第一の方向に沿った前記ピッチは、前記第一の大きさまたは前記第二の大きさのいずれの整数倍とも等しくないこと特徴とする方法。
請求項26
請求項24に記載の方法であって、前記特徴物のパターンは、前記第一の方向に沿って繰り返す特徴物を含むことを特徴とする方法。
請求項27
請求項24に記載の方法であって、前記画素の前記集合は、画像化された画素と画像化されない画素を含むことを特徴とする方法。
請求項28
請求項24に記載の方法であって、前記特徴物のパターンの中の1つの特徴物の一部を、前記第一の画素と前記第二の画素の少なくとも一方で形成するステップを含むことを特徴とする方法。
請求項29
請求項24に記載の方法であって、前記特徴物のパターンの中の2つの隣接する特徴物の間の間隔を、前記第一の画素と前記第二の画素の少なくとも一方で形成するステップを含むことを特徴とする方法。
請求項30
請求項24に記載の方法であって、前記特徴物のパターンの中の1つの特徴物の一部を、前記第一の画素と前記第二の画素の一方を含む1つまたは複数の画素で形成するステップを含み、前記特徴物の前記第一の方向に沿った前記ピッチが、前記特徴物の前記一部の前記第一の方向に沿った大きさの整数倍と等しくないことを特徴とする方法。
請求項31
請求項24に記載の方法であって、前記特徴物のパターンの中の2つの隣接する特徴物の間の間隔の一部を、前記第一の画素と前記第二の画素の一方を含む1つまたは複数の画素で形成するステップを含み、前記特徴物の前記第一の方向に沿った前記ピッチが、前記間隔の前記一部の前記第一の方向に沿った大きさの整数倍と等しくないことを特徴とする方法。
請求項32
請求項24に記載の方法であって、前記特徴物のパターンの中の1つの特徴物の縁辺における切り欠き部の一部を、前記第一の画素と前記第二の画素の一方で形成するステップを含むことを特徴とする方法。
請求項33
請求項32に記載の方法であって、前記切り欠き部は、前記第一の方向に沿って繰り返すことを特徴とする方法。
請求項34
請求項24に記載の方法であって、前記特徴物のパターンの中の前記特徴物は、前記第一の方向と直交する第二の方向に沿って規則に配列され、前記方法は、前記特徴物の前記第二の方向に沿ったピッチを決定するステップと、前記第一の画素と前記第二の画素の少なくとも一方を、前記走査方向と直交する方向に沿った第三の大きさで形成するステップであって、前記特徴物の前記第二の方向に沿った前記ピッチが、前記第三の大きさの整数倍となるようなステップと、を含むことを特徴とする方法。
請求項35
請求項34に記載の方法であって、前記特徴物のパターンは、前記第二の方向に沿って繰り返す特徴物を含むことを特徴と方法。
請求項36
請求項24に記載の方法であって、前記第一の方向は前記走査方向に平行であることを特徴とする方法。
請求項37
媒体上に、イメージングヘッドから走査方向に沿った前記媒体の走査中に放出される放射ビームで特徴物のパターンの画像を形成する方法であって、前記パターンの中の前記特徴物は第一の方向に沿って規則的に配列されており、前記方法は、前記特徴物の前記第一の方向に沿ったピッチを決定するステップと、前記特徴物のパターンの中の1つの特徴物の一部の前記第一の方向に沿った第一の大きさを決定するステップであって、前記特徴物の前記第一の方向に沿った前記ピッチが前記第一の大きさの整数倍と等しくないようなステップと前記イメージングヘッドを制御して、前記媒体上に大きさの異なる複数の画素で前記画像を形成するように、前記放射ビームを選択的に放出させるステップと、前記イメージングヘッドを制御して、前記媒体上に第一の画素の配列を形成するステップであって、前記第一の画素の配列の前記走査方向に沿った合算の大きさは、前記決定された第一の大きさと等しいようなステップと、前記イメージングヘッドを制御して、前記媒体上に1つまたは複数のその他の画素を形成するステップであって、前記1つまたは複数のその他の画素の各々は、前記第一の画素の各々と異なる大きさであるようなステップと、を含むことを特徴とする方法。
請求項38
請求項37に記載の方法であって、前記1つまたは複数のその他の画素の各々の、前記走査方向に沿った大きさは、前記第一の画素の各々の、前記走査方向に沿った大きさと異なることを特徴とする方法。
請求項39
請求項37に記載の方法であって、前記特徴物の前記走査方向に沿った前記ピッチは、前記1つまたは複数のその他の画素の各々の前記走査方向に沿った大きさの整数倍と等しくないことを特徴とする方法。
請求項40
請求項37に記載の方法であって、前記第一の方向は前記走査方向に平行であることを特徴とする方法。
請求項41
媒体上に、イメージングヘッドから走査方向に沿った前記媒体の走査中に放出される放射ビームで特徴物のパターンの画像を形成する方法であって、前記パターンの中の前記特徴物は第一の方向に沿って規則的に配列されており、前記方法は、前記特徴物の前記第一の方向に沿ったピッチを決定するステップと、前記特徴物のパターンの中の1つの特徴物の一部の前記第一の方向に沿った大きさを決定するステップであって、前記特徴物の前記第一の方向に沿った前記ピッチは、前記大きさの整数倍と等しくないようなステップと、イメージングヘッドを制御して、前記媒体上に前記画像を大きさの異なる複数の画素で形成するように、前記放射ビームを選択的に発生させるステップであって、前記複数の画素は、少なくとも、前記特徴物の前記第一の方向に沿った前記ピッチと、前記特徴物の前記一部の前記第一の方向に沿った前記決定された大きさに基づいて決定された、前記走査方向に沿った第一の大きさを有する第一の画素を含むようなステップと、を含むことを特徴とする方法。
請求項42
請求項41に記載の方法であって、前記複数の画素は第二の画素を含み、前記第二の画素の前記走査方向に沿った大きさは前記第一の大きさと異なることを特徴とする方法。
請求項43
請求項41に記載の方法であって、前記複数の画素は第二の画素を含み、前記特徴物の前記部分の前記第一の方向に沿った前記決定された大きさは、前記第二の画素の前記走査方向に沿った大きさの整数倍であることを特徴とする方法。
請求項44
請求項41に記載の方法であって、前記複数の画素は第二の画素を含み、前記特徴物の前記走査方向に沿った前記ピッチは、前記第二の画素の前記走査方向に沿った大きさの整数倍ではないことを特徴とする方法。
請求項45
請求項41に記載の方法であって、前記第一の方向は前記走査方向に平行であることを特徴とする方法。
請求項46
コントローラにより実行されると、前記コントローラに、イメージンクヘッドを制御して、走査方向に沿った媒体の走査中に、複数の画素で特徴物のパターンの画像を形成するように放射ビームを選択に放出させるステップであって、前記パターンの中の前記特徴物は第一の方向に沿って規則的に配列され、前記複数の画素が、前記走査方向に沿った第一の大きさを有する第一の画素と前記走査方向に沿った第二の大きさを有する第二の画素を含み、前記第二の大きさが前記第一の大きさと異なるようなステップと、前記特徴物の前記第一の方向に沿ったピッチを決定するステップと、前記第二の大きさを、少なくとも、前記特徴物の前記第一の方向に沿った前記ピッチと前記第一の大きさに基づいて決定するステップと、を行わせる命令を含むコンピュータ読取可能な信号群を記憶させたプログラム製品。
請求項47
コントローラにより実行されると、前記コントローラにイメージングヘッドを制御して、媒体上に、走査方向に沿って延びる走査線に沿った前記媒体の走査中に、特徴物のパターンの画像を画素で形成するように放射ビームを放出させるステップであって、前記パターンの中の前記特徴物が第一の方向に沿って規則的に配列されているようなステップと、前記特徴物の前記第一の方向に沿ったピッチを決定するステップと、前記イメージングヘッドを制御して、前記画素の集合からなる走査線を形成するステップであって、前記画素の前記集合が、前記走査方向に沿った第一の大きさを有する第一の画素と、前記走査方向に沿った第二の大きさを有する第二の画素を含み、前記第二の大きさは前記第一の大きさとは異なり、前記画素の集合の中のすべて前記画素の前記走査方向に沿った合算の大きさが、前記特徴物の前記第一の方向に沿った前記決定されたピッチと等しいようなステップと、を行わせる命令を含むコンピュータ読取可能な信号群を記憶させたプログラム製品。
請求項48
請求項24に記載の方法であって、前記特徴物の前記第一の方向に沿った前記ピッチは、前記画素の集合の少なくとも1つの画素の前記走査方向に沿った大きさの整数倍と等しくないことを特徴とする方法。
請求項49
請求項1に記載の方法であって、前記特徴物のパターンは、前記走査方向に関して歪曲した方向に沿って延びる1つまたは複数の縁辺を有する特徴物を含むことを特徴とする方法。
請求項50
請求項24に記載の方法であって、前記イメージングヘッドを制御して、第二の走査線を形成するステップを含み、前記第二の走査線は、前記第一の大きさと前記第二の大きさの各々と異なる、前記走査方向に沿った大きさを有する少なくとも1つの画素を含むことを特徴とする方法。
請求項51
請求項14に記載の方法であって、前記第二の方向は、前記第一の方向に略垂直であることを特徴とする方法。
請求項52
請求項14に記載の方法であって、前記走査方向と直交する前記方向は、前記走査方向に略垂直であることを特徴とする方法。
类似技术:
公开号 | 公开日 | 专利标题
US9645502B2|2017-05-09|Lithographic apparatus, programmable patterning device and lithographic method
JP4079301B2|2008-04-23|多書込み用ビーム源を有する光学式画像化ヘッド
TWI262138B|2006-09-21|Drawing method and drawing device
EP2329322B1|2016-09-07|Lithographic apparatus and lithographic method
TWI254568B|2006-05-01|Pixel position specifying method, correction method of image deflection, and image formation device
KR100572615B1|2006-04-19|패턴 묘화장치 및 패턴 묘화방법
US7847940B2|2010-12-07|Methods and apparatus for correcting banding of imaged regular patterns
CN102362223B|2014-06-18|光学成像写入系统
US6728023B1|2004-04-27|Optical device arrays with optimized image resolution
US8928720B2|2015-01-06|Apparatus and method of scanning light using an array of light sources
KR101278373B1|2013-06-25|스위트 스팟 유닛
US20010035944A1|2001-11-01|Image exposing method and image exposing apparatus
CA2350243C|2008-04-15|Compact multibeam laser light source and interleaving raster scan line method for exposing printing plates
EP1293348B1|2006-12-27|Image recording method and image recording apparatus
JP2007194607A|2007-08-02|マスクレスの干渉露光ユニットを用いる露光装置及びデバイス製造方法
US7369149B2|2008-05-06|Image recording method and image recording device for correcting optical magnification errors
US10690955B2|2020-06-23|Electro-optic displays, and components for use therein
US20040241340A1|2004-12-02|Method and device for marking identification code by laser beam
JP4753625B2|2011-08-24|パターン描画装置およびブロック数決定方法
JP5190860B2|2013-04-24|投影露光装置および投影露光方法
US6765604B2|2004-07-20|Banding-reduced imaging of a printing form
KR100742254B1|2007-07-24|묘화장치 및 묘화방법
EP1757978B1|2014-12-10|Apparatus for laser induced thermal imaging | and LITI method using the same, as well as fabrication method of a corresponding LITI mask
US6753898B2|2004-06-22|Method and apparatus for high speed digitized exposure
JP4450739B2|2010-04-14|露光装置
同族专利:
公开号 | 公开日
CN101925468A|2010-12-22|
EP2257437A2|2010-12-08|
EP2257437A4|2013-09-25|
WO2009095727A3|2009-09-24|
WO2009095727A2|2009-08-06|
CN101925468B|2012-11-21|
TW200949309A|2009-12-01|
US20100309280A1|2010-12-09|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2012-01-18| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120117 |
2013-01-30| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130130 |
2013-03-13| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130312 |
2013-08-07| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130806 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]